Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 13(10): 1129-1136, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846667

RESUMO

Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosomes by interfering with translation elongation. Structural analysis of the ribosome-KLB complex showed that the compound binds in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramin-B. KLB adopts a compact conformation and largely obstructs the tunnel. Engineered KLB fragments were observed to retain in vitro activity, and thus have the potential to serve as a starting point for the development of new bioactive compounds.


Assuntos
Antibacterianos/farmacologia , Klebsiella pneumoniae/química , Peptídeos/farmacologia , Ribossomos/química , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação/efeitos dos fármacos , Clonagem Molecular , Klebsiella pneumoniae/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...